Категории

Частотный преобразователь igbt

Подключение электродвигателя через частотный преобразователь. Плюсы и минусы

Частотные преобразователи: структура, принцип работы

Разрабатываем частотник. Часть первая, силовая часть.

Силовая электроника

Самостоятельная разработка частотника для трехфазного электродвигателя, дело достаточно затратное и хлопотное. Но если есть желание и интерес к данной теме огромен, то можно попробовать. Данный пост не
претендует на оригинальность и писатель из меня честно говоря плохой. Итак обо всем по порядку.

Начнем с общей структурной схемы.



Данная структурная схема построена по так называемой схеме двойного преобразования. Трехфазное напряжение 380В частотой 50 Гц поступает на вход неуправляемого выпрямителя. На выходе выпрямителя напряжение составляет около 540 В. Это и есть первый этап преобразования. На втором этапе напряжение при помощи инвертора преобразуется в широтно-модулированные импульсы, которые и поступают на обмотки электродвигателя. Статорные обмотки имеют активно-индуктивный характер сопротивления и являются фильтрами, сглаживающими ток. Среднее значение тока будет зависеть от среднего значения приложенного напряжения, то есть от соотношения длительностей внутри периода ШИМ. Блок управления реализует основные алгоритмы управления инвертором. Обеспечивает диагностику силового модуля, а также выполняет функции противоаварийной защиты. Блок питания предназначен для питания цепей управления.

Выпрямитель.
Схема выпрямителя предельно проста.



На вход силового блока поступает трехфазное напряжение сети амплитудой 380 В, и частотой 50 Гц. Для защиты от перенапряжения в схеме используются варисторы VR1- VR3. Далее входное напряжение поступает на выпрямитель с промежуточным звеном постоянного тока. Выпрямитель 36МТ160 представляет собой трехфазную мостовую схему (т.н схема Ларионова) конструктивно выполненную в одном модуле.
Во время зарядки конденсатора промежуточного контура протекает очень большой кратковременный ток. Это может вывести из строя выпрямитель. Ток зарядки ограничивается включением балластного резистора R4 последовательно с конденсаторами DC-звена, который активизируется только при включении преобразователя. После зарядки конденсаторов резистор шунтируется, контактными реле К1. Большая емкость конденсаторов требуется для сглаживания напряжения промежуточного звена. После выключения инвертора из сети, конденсаторы сохраняют высокое напряжение в течение определенного времени.

Вот что получилось в итоге.


Блок питания.
Собран на микросхеме UC3843. Вообще, что касается блока питания, то вовсе не важно какой будет использован.
Хоть самодельный хоть купленный. Главное, на мой взгляд, по возможности питание драйвера IGBT и питания блока управления было от отдельных обмоток трансформатора.

Схема.



Фото.



Инвертор.
Схема инвертора.



IGBT-драйвер собран на транзисторах FGA25N120 и связке оптопары TLP250 и микросхемы TC4420. Что касается микросхемы TC4420 то ее мне посоветовал использовать один мой друг который занимается усилителями «класса D».

Готовый инвертор.





Электродвигатель.
Двигатель взял для начала малой мощности. Закрепил на нем инкрементальный энкодер «RO6345» фирмы «IFM».



Все это протестировано, проверено и ждет изготовления блока управления. Будем надеется что у меня хватит терпения, времени и сил довести этот проект до работающего прототипа.

Продолжение следует…
  • +19
  • 02 сентября 2014, 13:46
  • Pavel74
Источник: http://we.easyelectronics.ru/power-electronics/razrabatyvaem-chastotnik-chast-pervaya-silovaya-chast.html

Неисправность IGBT-модуля частотного преобразователя.

Настоящим прорывом в области регулируемого электропривода стало появление силовых преобразователей частоты или как их именуют в профильной среде — частотников. Это открытие кардинально изменило подход в проектировании систем электроприводов. Если относительно недавно при проектировании сложных механизмов, где без точного регулирование параметров (скорость, момент) не обойтись, выбирались двигатели постоянного тока — ДПТ, то с появлением частотников привода переменного тока начали активно вытеснять двигатели постоянного тока из данных систем. Даже в тяговых электроприводах асинхронный двигатель с коротко-замкнутым ротором вытесняет ДПТ последовательного возбуждения.

Содержание:

Классификация преобразователей частоты

Техническое устройство, преобразующее переменное напряжения  одной частоты на входе, в изменяющееся по определенному закону переменное напряжение, но уже другой частотой на выходе называется преобразователем частоты (ПЧ). Бывают двух типов:

  • Непосредственные
  • Двухзвенные

Непосредственные – это реверсивный тиристорный преобразователь. Главное его достоинство в том, что он подключается напрямую в сеть без дополнительных устройств.

Двухзвенные – представляют собой транзисторный или тиристорный преобразователь. Но главное их отличие от непосредственных преобразователей в том, что для корректной и безопасной работы инвертора необходимо звено постоянного напряжения. Соответственно для подключения их к общепромышленным сетям необходим выпрямитель. Как правило изготавливаются комплектными (инвертор и выпрямитель поставляются вместе и работают от одной системы управления).

Двухзвенные преобразователи частоты

Двухзвенный или как его еще называют со звеном постоянного тока, созданный на базе АИН (автономный инвертор напряжения), содержит в комплекте выпрямитель и фильтр:

ЭМ – электрическая машина, АИН – автономный инвертор напряжения, Lф, Сф – индуктивности и емкости фильтра, fнз – задание частоты выхода инвертора, udз – задание выходного напряжения для выпрямителя, если используются управляемые выпрямители, СУВ, СУИ – системы управления выпрямителем и инвертором соответственно, uнз – задание выходного напряжения инвертора, В – выпрямитель. Пунктиром показаны связи, которые включаются в систему в зависимости от типа устройства.

Для улучшения качества энергии в звене постоянного напряжения и сглаживании пульсаций напряжения и тока используют L-C фильтр. Зачастую он имеют Г – образную схему включения, как показано выше. Также иногда используют фазовый сдвиг в цепи переменного напряжения путем включения обмоток трансформатора в треугольник и звезду:

Данная схема более дорогостоящая и может применяться только при использовании индивидуального трансформатора.

В данной системе выпрямитель может быть управляем или не управляем. Если он управляем, то функция регулирования напряжения ложится на него, если нет, то на АИН. Для рекуперации энергии в сеть выпрямитель должен быть полностью управляем и реверсивен (двухкомплектный). Управление частотным преобразователем производится импульсным методом. Самые распространенные методы это ШИР (широтно-импульсное регулирование) и ШИМ (широтно-импульсная модуляция).

Еще более широкое применение получили автономные инверторы тока (АИТ):

АИТ – автономный инвертор тока, СУИ, СУВ – системы управления преобразователями, УВ – управляемый выпрямитель, Lф – индуктивность фильтра, fнз – задание частоты выходного тока, іdз – задание выходного тока в звене постоянного тока.

В отличии от АИН, где регулируемой выходной величиной является напряжение, в АИТ регулируемой величиной является ток. Немаловажную роль в формировании выходного сигнала заданной частоты является частота коммутации транзисторов или тиристоров. Чем выше частота коммутации, тем лучше качество синусоиды на выходе частотника, но возрастают потери в преобразователе. Ниже приведен результат моделирования работы АИТ (на IGBT транзисторах) на активно-индуктивную нагрузку при различных частотах коммутации:

Частота коммутации 8000 Гц

Как видно из графиков уменьшение частоты коммутации очень плохо влияет на выходное качество тока. Поэтому для каждого устройства необходимо подбирать частоту коммутации частотника соответственно качеству выходного напряжения или тока. Для оптимизации данных процессов на выходе преобразователя частоты иногда ставят L-C фильтр, для сглаживания пульсаций токов и напряжений:

Как видим из схемы —  последовательно подключают индуктивность, для сглаживания пульсаций тока, и параллельно емкость, для сглаживания пульсаций напряжения.

Также работа частотника генерирует высшие гармоники в питающей сети:

Для уменьшения влияния высших гармоник на сеть используют фильтро-компенсирующие устройства (ФКУ)

Ниже показаны принципиальные схемы преобразователей частоты.

Автономный инвертор напряжения с управляемым выпрямителем

Тиристоры VS1-VS6 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. При увеличении напряжения на емкости Сф выше заданного, транзистор VT7 открывается и вводится в работу тормозной резистор Rб, на котором рассеивается энергия переданная от электрической машины. При глубоком регулировании VD0 повышает коэффициент мощности выпрямителя.

Данный ПЧ не может рекуперировать энергию в сеть, а также насыщает выходное напряжение высшими гармониками и усложняет систему управления из-за необходимости управления УВ. При исполнении УВ двухкомплектным, рекуперирует энергию в сеть, но усложняет систему и делает ее более дорогостоящей. В настоящее время является устаревшим.

Автономный инвертор напряжения с неуправляемым выпрямителем

Диоды VD7-VD12 выполняют роль выпрямителя. Транзисторы VT1-VT6 преобразуют постоянное напряжение в переменное заданной частоты. Диоды VD1-VD6 защищают транзисторы от перенапряжений, а также играет роль обратного выпрямителя при торможении машины. Транзистор VT7 выполняет роль ключа для резистора торможения Rб. За счет использования ШИМ происходит регулирование амплитуды выходного напряжения и его частоты.

При использовании неуправляемого выпрямителя  для торможения двигателя АИН переводится в режим управляемого выпрямителя, работающего таким образом, что напряжение на емкости Сф выше заданного, несмотря на уменьшение скорости вращения двигателя. При увеличении напряжения на емкости Сф открывается транзистор VT7 и энергия выделяемая электродвигателем гасится на тормозном резисторе.

Данный способ торможения получил названия инверторного торможения, хотя инвертирования на самом деле нет. Это связано с тем, что термин динамическое торможение для систем с асинхронным двигателем занят, под ним понимается пропускания постоянного тока через обмотки двигателя.

Главным недостатком такой системы есть отсутствие возможности рекуперировать энергию в сеть, но она получила широкое применение для систем, где не требуется частое торможение.

Рекуперирующий двухзвенный преобразователь частоты на основе обратимого преобразователя напряжения

ОПН – обратимый преобразователь напряжения. В данной схеме имеется два ОПН. ОПН1 работает в выпрямительном режиме и передает энергию через ОПН2, работающий в инверторном режиме, к двигателю. При торможении ОПН2, подключенный к двигателю переходит в выпрямительный режим, а ОПН1, подключенный к сети, в инверторный режим. При этом происходит рекуперация энергии в сеть. Если задать схеме управления на входе cos? = ± 1, то во всех режимах при регулировании и торможении двигателя из сети будет потребляться или в сеть будет отдаваться практически только активная мощность, а ток будет практически синусоидален, что определяет минимальное вредное влияние на питающую сеть. Эти преобразователи на сегодняшний день являются самыми близким к идеальным.

Ниже приведена функциональная схема данного устройства:

В схеме имеются следующие элементы: ОПН1, подключенный к сети, ОПН2, подключенный к двигателю, датчики тока и напряжения ДТ1 и ДН1 на стороне сети и ДТ2 и ДН2 на стороне постоянного напряжения. Требуемая мощность на стороне постоянного напряжения определяется измерением средних значений Ud и Id, а затем и мощности Pd с помощью вычислителя ВМ, куда поступают сигналы с ДН2 и ДТ2 через фильтр Ф. По действующему значению напряжения сети U1, определенному с помощью вычислителя напряжения ВН, и с учетом заданного угла ?1 определяется ток I1зад, обеспечивающий заданную мощность. Блок ФСН формирует синусоидальное напряжение, повторяющее напряжение сети, а блок «?1» формирует заданную синусоиду с учетом фазового сдвига ?1. В блоке «ЗАД i1» формируется заданная синусоида тока. В модуляторе М она сравнивается с сигналом датчика тока ДТ1 i1, и формируются управляющие импульсы, которые через усилитель мощности УМ поступают на транзисторы. Блок НТ определяет направление тока (выпрямительный или инверторный режим). Блок выбора режима ВР в соответствии с сигналом от НТ задает угол ?1.

Преимущества двухзвенного рекуперирующего ПЧ: независимость выходной частоты от входной, возможность получения высокого коэффициента мощности на стороне сети. К недостаткам можно отнести: высокая стоимость, сложность системы управления.

Рекуперирующие двухзвенный преобразователь частоты на основе инверторов тока

Автономный инвертор тока, преобразовывает постоянный ток, подаваемый на его вход, в пропорциональный по величине переменный ток. Режим источника тока на входе обеспечивается за счет большой индуктивности L и применения токостабилизирующей обратной связи, поддерживающей заданное значение тока Idз. АИТ выполнен по схеме с отсекающими диодами. Рекуперация энергии при торможении в АИТ возможна при сохранении направления тока за счет сдвига токов и напряжений, т.е. переводом АИТ в режим выпрямления за счет сдвига управляющих импульсов относительно фазных ЭДС электрической машины.

Энергия, передаваемая от электрической машины на сторону постоянного напряжения, должна быть далее передана в сеть переменного напряжения. Для этого управляемый выпрямитель на входе ПЧ должен быть переведен в инверторный режим. При этом сохраняется направление тока и не требуется установка дополнительного комплекта вентилей. Схема применяется в двигателях достаточно большой мощности. Недостатками схемы являются ее не очень хорошие характеристики, поэтому она не является перспективной.

Появление запираемых тиристоров позволило улучшить характеристики ДПЧ на основе АИТ.

Формирование выходного тока осуществляется совместно управляемым выпрямителем и автономным инвертором тока.

Показана временная диаграмма, отражающая моменты включенного и выключенного состояний тиристора V1. На участке соответствующим зоне 2, ключ V1 включен постоянно, и ток сглаживающего дросселя непрерывно поступает в фазу А двигателя. Для формирования тока в зонах 1 и 3 необходимо соответствующим образом переключать тиристоры. Для обеспечения нарастания и спадания тока (зоны 1 и 3) обычно используется два метода – трапецеидальный и метод выборочного исключения гармоник.

При использовании первого метода моменты коммутации ключей АИТ определяются по пересечению линейно нарастающего сигнала и опорного сигнала пилообразной формы следующего с несущей частотой, при втором методе моменты коммутации ключей рассчитываются заранее исходя из условия подавления высших гармоник определенного порядка (5 и 7 и т.д.). В этой схеме улучшается синусоидальность тока, протекающего по фазам двигателя. Но сохраняются все недостатки, возникающие при питании от сети управляемых выпрямителей напряжения. Преобразователи частоты на основе инверторов тока наиболее применимы в электроприводе синхронных машин, где на выходе вместо автономного инвертора тока включается инвертор тока, ведомый электрической машиной.

Таким образом, на входе и на выходе ПЧ включаются однокомплектные рекуперирующие преобразователи (ОРП) на тиристорах. При этом ведомый инвертор полностью аналогичен выпрямителю, подключенному к сети. Коммутация вентилей ведомого инвертора осуществляется за счет ЭДС электрической машины.При низкой скорости вращения электрической машины эта ЭДС недостаточна для коммутации вентилей. Поэтому при пуске коммутация осуществляется путем прерывания тока в цепи постоянного тока включением и запиранием выпрямителя.


Непосредственные преобразователи частоты

При использовании НПЧ напряжение из сети подается через управляемые вентили на двигатель. В каждой фазе НПЧ установлен реверсивный двухкомплектный преобразователь с совместным или раздельным управлением силовыми комплектами.

На рис. 1а приведена схема трехфазно-однофазного НПЧ на основе трехфазных нулевых схем. Он преобразует трехфазное напряжение в однофазное, но с регулируемой частотой.Комплекты В и Н переключаются, и на выходе получается двуполярное напряжение. Для управления преобразователями используют определенные законы управления — прямоугольный и синусоидальный. Если используют прямоугольный принцип управления, то алгоритм работы будет таков: при прохождении одной полуволны напряжения, на один из комплектов подаются управляющие импульсы с углом управления (углом задержки) a = const. Этот комплект будет работать в режиме выпрямителя, а затем с углом управления (углом опережения) b = a. Чтоб снизить ток необходимо перейти в инверторный режим (рис. 1 б). Для избежания короткого замыкания в самом инверторе необходимо чтоб ток снизился до нуля – это называется бестоковой паузой. После осуществления бестоковой паузы в работу включается второй комплект.

Если используют синусоидальное управление, то гладкая составляющая выходного напряжения должна изменятся по синусоидальному закону, для этого угол управления a непрерывно меняется (рис. 1 в).

Схема трехфазно-трехфазного НПЧ, выполненного на основе трехфазных мостовых схем. Ниже приведена схема.

Данный тип преобразователей не получил широкого применения из-за ряда недостатков при его применении. А это: невозможность полного регулирования выходной частоты (при использовании трехфазных мостовых схем диапазон регулирования 25-45 Гц, а при нулевых 15-45 Гц). Постоянная коммутация вентилей, что приводит к ухудшению коэффициента мощности, а также плохое качество выходного напряжения и большое влияние на питающую сеть.

Преимуществом можно признать то, что у таких преобразователей более высокий КПД, из-за однократного преобразования энергии.

Наиболее распространены преобразователи частоты на базе АИТ и АИН на IGBT транзисторах, в силу лучших показателей качества энергии на выходе преобразователя и их влияния на сеть.

Источник: http://elenergi.ru/raznovidnosti-preobrazovatelej-chastoty.html

Модуль IGBT для частотного преобразователя, эксплуатация на практике

Содержание:

В статье описываются основы применения перспективных силовых модулей для повышения возможностей частотных преобразователей.  Они позволяют удешевить многие решения в области электропривода с использованием мощных асинхронных двигателей.

Insulated Gate Bipolar Transistor

Заголовок этого раздела переводится как “биполярный транзистор с изолированным затвором” (англ.). Это современный прибор, появившийся примерно в конце прошлого века и сделавший революцию в силовой электронике. Электроэнергия используется человечеством уже давно, по мере развития техники одна часть возникающих проблем была успешно решена как например, отказ от дорогих магнитных сплавов в пользу дешевой стали и медных обмоток возбуждения в двигателях постоянного тока и магнитах (Вернер Сименс). Другая часть проблем долго и упорно не поддавалась решению. К ней, например, можно отнести использование переменного тока в электротранспорте.

Электротехнические устройства всегда содержат элементы коммутации и это самые больные их места. При разрыве многих электрических цепей возникает дуга, пережигающая со временем контакты. Сопротивление контактов в идеале должно быть не больше, чем самый маленький участок остальной цепи, но на практике, именно благодаря окислам от дуги, в месте контакта возникает повышенное сопротивление. По закону Джоуля-Ленца на этом сопротивлении возникает и рассеивается тепловая мощность пропорциональная сопротивлению и квадрату тока. Нагрев током места контакта приводит к его ускоренному старению, чем дальше, тем быстрее, и в результате цепь выходит из строя.

Полупроводниковые переключатели

Задача любого ключа в электротехнике – обеспечить короткое замыкание. Идеальный ключ это тот, который имеет:

  1. бесконечно большое сопротивление в открытом состоянии;
  2. нулевое время включения (замыкания);
  3. нулевое сопротивление в замкнутом состоянии;
  4. нулевое время отключения.

Инженеры долго пытались использовать и вакуум, и различные газы, и ртуть, и масло, и золото с платиной, и еще много чего, для того, чтобы сделать быстродействующие переключатели, не боящиеся дуги и успешно борющиеся с нею. Решение нашлось только в полупроводниковых материалах, появившихся к началу второй половины прошлого века и далеко не сразу. Сначала полупроводниковые диоды, работавшие на промышленной частоте, затем биполярные транзисторы, переход с германия на кремний, некоторое повышение рабочих частот, изобретение тиристора, jfet-транзисторов, примерно таким путем шла  электроника к понятию и термину силовой транзисторный ключ (СТК).

В поисках идеального ключа физики твердого тела и и инженеры дошли до MOSFET: “Metal-Oxide-Semiconductor Field Effect Transistor” (“металл-окисел-полупроводник” МОП-транзистор, транзистор с изолированным затвором). Это потрясающий прибор, который сделал первую революцию в силовой импульсной технике. Он способен переключать  значительные токи всего лишь присутствием (или отсутствием, в зависимости от типа) электрического поля на затворе. Ток в цепи управления оказался не нужен, однако, при повышении рабочих частот пришлось кормить током паразитную емкость затвора, и это вызвало свои проблемы.

К недостаткам привычных на тот момент биполярных транзисторов относились:

  • большой ток в цепи управления;
  • малый коэффициент передачи тока;
  • сильный разброс параметров от экземпляра к экземпляру;
  • зависимость параметров от температуры;
  • малая допустимая плотность токов в импульсных режимах;
  • знакопеременное напряжение на базе для запирания;
  • склонность к накоплению тока;
  • большое время рассасывания неосновных носителей.

Что касается полевых транзисторов, то они лишены этих недостатков в силу самого принципа своего устройства. В них нет p-n перехода со всеми его проблемами. К недостаткам полевого МОП-транзистора относятся довольно неважные качества прямой проводимости, особенно с ростом рабочего напряжения приборов. Биполярные, в этом отношении, могут иметь довольно малое напряжение коллектор-эмиттер в открытом состоянии. MOSFET нашли себе хорошее применение в высокочастотной импульсной технике.

IGBT-транзисторы


Объединив положительные качества биполярных и полевых, с изолированным затвором, транзисторов, можно получить для низкочастотной (имеется в виду промышленная частота 50-60 Hz) техники весьма достойный переключающий элемент – IGBT. Его обозначение и упрощенная эквивалентная схема показана на рисунке выше. Схема собрана подобно дарлингтоновской для биполярных. Полевой транзистор с n-каналом фактически служит усилителем тока с большим усилением, и хорошо открывает связанный с ним биполярный транзистор, который служит силовым в данной паре.

Его эмиттер в этой структуре назван коллектором и наоборот (по “принципу утки” – по отношению к клеммам прибор отчасти ведет себя как биполярный транзистор с гигантским усилением). В то же время, нельзя считать IGBT простой схемой, которую “спаяли” из n-канального полевого и pnp-биполярного транзисторов, – это именно полупроводниковая структура, а не схема. Формальные переход база-коллектор биполярной части и канал полевой образуют единую структуру на кристалле.

Область применения IGBT транзисторов по электрическим параметрам лежит от 300 В и выше, по частоте – до 10 кГц. Это как раз хорошо подходит для промышленной частоты (в применении частотников). IGBT применяются в электроприводах, начиная от небольших электроинструментов вплоть до  электровозов. То, что они работают в области не очень высоких частот, в отличие от mosfet, избавляет от множества проблем, связанных с паразитными индуктивностями и емкостями – управляющий транзистор в такой структуре чувствует себя вполне комфортно, его частота переключений сравнительно невелика. Значит, легче перезаряжать затворную емкость.

Большой проводимости от него, в данном случае, не требуется. Выходной pnp биполярный транзистор устроен таким образом, что выдерживает большое обратное напряжение и может работать в инверсном режиме. Простота управления IGBT и область безопасной работы оказались  гораздо выше, чем у биполярных транзисторов. IGBT, как таковые, не имеют встроенного обратного диода, но такой диод с быстрым восстановлением  может быть добавлен в схему или внешним образом, или интегрирован на кристалле, если это нужно для той области, для которой предназначается прибор.

IGBT появились в 1983 году (в IR запатентовали первый образец). Первые образцы неважно переключались и были ненадежными, поэтому на рынок, как следует, не вышли. Трудности были технологическими, связанными с получением пластин толщиной около 100 мкм. Их преодоление, а также появление Trench-технологии для изготовления MOSFET позволили резко снизить сопротивление канала в открытом состоянии, и это позволило приблизить свойства IGBT практически к свойствам традиционного механического выключателя, но без присущего ему образования дуги и на несколько порядков высоким быстродействием.

Транзисторы IGBT применяют в частотных преобразователях, устройствах плавного пуска, они интенсивно вытесняют тиристоры из всех областей, несмотря на свою значительную цену. Из используют в источниках питания, инверторах, электроприводах, сварочных питающих устройствах, на транспорте.

Модули IGBT

Поскольку IGBT, как правило, крайне редко применяются в одиночном варианте, конструкторы стали думать о модульных вариантах их компоновки. Модуль конструктивно гораздо проще и компактнее использовать в изделиях. Но не только это.

Очень важной функцией IGBT-модулей является возможность наращивать мощность частотных преобразователей, инверторов без больших материальных затрат!

Маломощный частотный преобразователь с развитыми функциями управления стоит гораздо дешевле мощного. Мощный IGBT-модуль недешев сам по себе, но мощный IGBT-модуль и недорогой но “умный” частотник по цене могут оказаться в несколько раз дешевле. Потребителям, (да и производителям) есть о чем подумать.

Потребуется, правда, вмешательство достаточно квалифицированных инженеров, так как речь идет о переделке схемы частотников, так как далеко не все модели допускают такое расширение: там нет ни выходов для таких подключений, и ни слова в инструкциях, кроме, разве что, запрета  вмешательства в схему преобразователя со стороны потребителей и отказа об ответственности для таких случаев. Кроме технической стороны дела, есть еще и возможная юридическая: возможное нарушение патентов, лицензий и т.д. Это тоже надо иметь в виду.

Модуль IGBT для  преобразователя частоты

Со схемой управления IGBT-модули связываются при помощи драйверов, так как встроенных драйверов модули не имеют. Это специальные интегральные схемы, которые позволяют эффективно управлять затворами IGBT и выжать из них максимальную эффективность. Главное, для чего нужны драйверы – до предела снизить времена переключения IGBT, и, тем самым, приблизить их к идеальному ключу из учебников по электротехнике. Затем, согласовать их со схемой управления электрически, в том числе, обеспечить гальваническую развязку при необходимости.

Если для усиления частотного преобразователя используются внешние модули IGBT, то остается только подключить к ним выходы драйверов. Ниже показана схема модуля для преобразователя частоты:

Модуль крепится винтами на охлаждающий алюминиевый радиатор через теплопроводящую свинцовую пасту или специальные керамические прокладки. Эти поверхности должны лежать строго в одной плоскости и быть совершенно чистыми при сборке! Иначе не будет обеспечен достаточный теплоотвод. Кстати, о температуре. В модуль встроен термисторный датчик температуры (клеммы 22 и 23). Рабочая температура в модуле не должна превышать 100°C. Для снятия достаточного тока сделаны дополнительные петли на силовых контактах (модуль выполнен под пайку).

Контакты 1,2,3; 4,5,6; 7,8,9 подключаются к питающей трехфазной сети.

Контакты 38,39,40 являются плюсовой шиной сетевого выпрямителя, а контакты 41,42,43 – отрицательной.

Контакты 33,34,35 являются плюсовой шиной выходного инверторного моста, а контакты 30,31,32 – отрицательной. Последние четыре перечисленные группы, а также контакт 29, группа 36,37 образуют выходы для звена постоянного тока.

Контакты 10, 28 служат для подключения к драйверу, управляющему работой выходной фазы частотника. Аналогичную роль играют группы 14, 26 и 18, 24 для двух оставшихся фаз. Контакты 11, 12, 13 – это выход одной фазы инвертора, а группы 15,16,17 и 19,20,21 выходы двух остальных фаз.

Правильные временные диаграммы ШИМ и достаточная эффективность драйверов, которые должны справиться с зарядкой и разрядкой емкости затвора транзистора, – это залог того, что двигатель вообще будет вращаться и ничего не сгорит. Поэтому инверторный мост предварительно надо запитать от маломощного источника постоянного тока с ограничением тока и убедиться, при помощи осциллографа, в отсутствии сквозных токов, правильности “синусов”, формируемых мостом, правильном сдвиге фаз, на всех частотах, которые выдает преобразователь. Питание управления в частотном преобразователе также подается лабораторным способом.

Сигнал обратной связи по температуре модуля также должен быть корректным. Подогревая модуль каким-либо способом в пределах 20…80°C, необходимо контролировать его фактическую температуру точным термометром. Затем найти в меню преобразователя пункт с соответствующим параметром, проконтролировать его.

Если мы убедимся, что драйверы надежно управляют модулем, а сигнал обратной связи по температуре не содержит ошибок, то тогда можно делать монтаж, собирать звено постоянного тока и затем снова сделать проверку на двигателе небольшой мощности, через предохранители, рассчитанные на соответствующий ток, включаемые в каждую фазу.

Причины нагрева модулей и необходимость их охлаждения

Поскольку наши ключи не являются идеальными, то есть, они не обеспечивают идеального короткого замыкания, то в открытом состоянии их сопротивление не равно нулю. Значит, на этом сопротивлении рассеивается джоулево тепло. Это один источник, и не самый значительный.

Кроме открытого состояния, есть еще переходные процессы, связанные с включением и выключением. В этот период сопротивление коллектор-эмиттер уменьшается от нескольких гОм, до единиц или десятков миллиОм. В момент равенства сопротивления ключа сопротивлению остальной цепи, рассеиваемая мощность достигает максимума. Затем мощность спадает до уровня открытого состояния. Получается импульс мощности. Если мы проинтегрируем его по промежутку времени, в течение которого происходит процесс включения, то найдем тепловую энергию этого импульса.

При выключении происходит нечто аналогичное, но в обратном направлении. Потери в цепи управления, на фоне потерь в силовой цепи, выглядят игрушечными ими можно пренебречь (это проблемы не потребителей, а разработчиков). Потери в открытом ключе – это понятие академическое, на практике составляют ноль безоговорочно. Картина включения и выключения IGBT хорошо показана ниже.

V( GE ) – напряжение затвор-эмиттер, I( C ) – ток коллектора.

При включении IGBT возникает импульс тока, при выключении – импульс напряжения, за счет индуктивного характера нагрузки. Динамический диапазон может быть довольно значителен, а скорость переходных процессов весьма небольшая. Чтобы подавить обратные всплески напряжения, нужны импульсные быстродействующие диоды, от которых также, в свою очередь, требуется и быстрое восстановление. IGBT переключаются с частотой ШИМ-модулятора, а это единицы и более десятка кГц.

Чем выше выбирают частоту модуляции, тем точнее можно воспроизвести синусоиду, но тем больше и потерь переключения, те больше греется радиатор модуля и тем больше радиопомех возникает. Чем меньше частота модуляции, тем легче работать модулю IGBT, но тем больше гармоник тока в силовой цепи и ее реактивная мощность. Поэтому потребителю дается возможность выбирать частоту модуляции ШИМ в пределах 2…16 кГц (разные модели частотников имеют разные диапазоны) с дискретным шагом в несколько ступеней.

На радиаторах модулей IGBT может рассеиваться мощность от единиц Вт, до нескольких кВт, в зависимости от мощности модулей. В общем и целом, можно считать, что  современные модули IGBT рассеивают в тепло около 0,3…0,5% коммутируемой мощности. Это довольно неплохо, по сравнению с техникой прежних лет.

Эксплуатация модулей на практике

Самое главное, не перегружать модули по току. С напряжением все более-менее ясно, для рекуперирования тормозной мощности и подавления всплеска напряжения на звене постоянного тока меры приняты в самом преобразователе и можно использовать тормозные резисторы.

Перегрузку по току можно условно поделить на три диапазона. Небольшая перегрузка возникает при торможении двигателя самим механизмом, с этим преобразователь справляется сам вполне корректно. Он или предупреждает пользователя, или позволяет себе немного “отдохнуть”, все зависит от настроек.

Значительная перегрузка, аварийная, возникает при заклинивании вала двигателя по каким-то причинам. В таком случае преобразователь частоты успевает отключить аварийную цепь и сигнализирует об этом на дисплее и на специальном выходе (аварийное реле).

Наконец, есть перегрузка, с которой модуль уже не справится даже в самом умном частотном преобразователе. Это короткое замыкание в кабеле от модуля до двигателя. В этом случае, поскольку индуктивности петли замыкания составляют доли мкГн, а проводимость источника тока (питающей подстанции и кабелей) очень велика, то скорость нарастания тока достигает порядка нескольких килоампер в микросекунду!

За это время не успеет сработать никакая обратная связь и модуль будет пробит током. В результате он просто расплавится. Поэтому нужно использовать только надежные двигатели и брать кабели с запасом, и по механической, и по тепловой, и по электрической прочности. Нам очень желательно иметь как можно более короткое замыкание в самом ключе, но боже упаси получить его в питаемой нагрузке. Это гарантированно убьет IGBT да и подвергнет большому риску привязанную к нему электронику.

При замене модулей IGBT следует помнить (или вообще знать), что полевые транзисторы очень легко могут быть выведены из строя подачей на затвор большого потенциала, или даже просто статического заряда от тела человека! Дорогущий модуль IGBT может быть уничтожен  пальцем в буквальном смысле, если человек заряжен статикой в сухом помещении. Поэтому ни в коем случае нельзя измерять в модуле его “исправность” различными пробниками и даже мультиметром. Перед монтажом надо убрать все статические заряды при помощи правильного заземления, использовать заземленные паяльники, а все оборудование обязательно должно быть отключено от сети. Затворы следует подключать к драйверам только после подключения всех силовых цепей модуля.

При запуске в эксплуатацию надо обязательно проверить условия охлаждения модулей, особенно при мощной нагрузке. Не всегда для этого хватает естественной конвекции, преобразователи и инверторы могут иметь вентиляторы, надо проследить, чтобы они не были перекрыты или забиты пылью. Охлаждающий радиатор заземлен (модули изолированы электрически от своей охлаждающей поверхности, так что может быть применено дополнительное охлаждение радиатора, если частотник, например, установлен в горячем месте “по необходимости”. Здесь есть над чем подумать не только местным специалистам но и производителям: на одном предприятии в жаркой котельной применялось водяное охлаждение! Радиатор был полностью переделан, и охлаждался проточной холодной водой.

Источник: http://chistotnik.ru/igbt-modul-dlya-chastotnika.html
Еще по теме: